
“Mercury” is a trademark of Canis Automotive Labs Ltd.

Security Gateway Overview
Requirements analysis

Document number 2201
Version 3
Issue date 2022-03-22

Copyright © 2022 Canis Automotive Labs Ltd. 2 / 25

1 Rationale

This document describes the Canis Security Gateway from the perspective of

requirements analysis. It describes the architecture and design of the gateway then

compares this to requirements as part of a gap analysis. There are also

recommendations for new requirements.

Obviously there are limitations to the security provided by a gateway:

- An attacker might have direct physical access to the trusted CAN bus

- An attack might use legitimate traffic flows across the gateway to subvert a

device on the trusted bus and then use that to mount attacks

A security gateway therefore forms only part of the defenses of a CAN bus.

The document begins with a description of the gateway, and then compares to a

formal set of requirements with an analysis of gaps.

Copyright © 2022 Canis Automotive Labs Ltd. 3 / 25

2 Architecture

2.1 Hardware

The diagram below shows the hardware architecture. An off-the-shelf

microcontroller (MCU) with two CAN controller interfaces is used, each using

standard CAN transceivers. The Canis hardware uses the SAMC21 (a Cortex M0

based MCU) and the Microchip MCP2562FD CAN transceivers. The MCU was

chosen specifically for its handling of CAN frame buffering (see later).

The hardware also includes an external I/O connector, which provides six

connections to the general purpose I/O (GPIO) pins of the MCU (which can be

configured to be a serial port, analog in, analog out or digital I/O).

The two CAN interfaces are:

- Inside. This is the trusted CAN bus where normal traffic operates.

- Outside. This is the untrusted side and the side an attacker is assumed to

access.

2.2 Software

The software consists of:

- A bootloader for programming the main flash memory

- A simple flash ‘file system’ to store configuration information, firewall rules,

event logs, and encryption keys

- CAN drivers for the dual CAN controllers

5

5

4

4

3

3

2

2

1

1

D

C

B

A A

XIN

XOUT

DAC
ADC

S
E

R
C

O
M

0
_
P

0
S

E
R

C
O

M
0
_
P

1
S

E
R

C
O

M
0
_
P

2
S

E
R

C
O

M
0
_
P

3

C
A

N
1
_
S

H
D

N

C
A

N
1
_
T

X
C

A
N

1
_
R

X

CAN0_SHDN

CAN0_RX
CAN0_TX

n
R

E
S

E
T

SWDIO
SWCLK

CAN0L

SERCOM0_P3 SERCOM0_P2
SERCOM0_P1 SERCOM0_P0
ADC DAC
CAN1L

nRESET_AUXnRESET_AUX nRESET

CAN0_TX CAN1_TX

CAN0_RX CAN1_RX

CAN1_SHDNCAN0_SHDN

CAN0H

CAN0L

CAN1H

CAN1L

C
A

N
1
_
S

T
B

CAN0_STB

CAN0_STB CAN1_STB

X
IN

X
O

U
T

CAN0L CAN0H

CAN1L CAN1H

GND

GNDGND GND GND

VCPU

GNDGND

GND

GNDVCPU

GND

VCPU

VCORE

GNDGNDGND

VCPU

GND

GND

GND

VCPU GND

VCPU

VCPU

GND

VCPU

VUSB

VAUX

VAUXVAUX

GNDGND

GND GND

VCPU VCPU

GND GND

GNDVCPU

GND

GND

GND

VCPU

GND

GND

Title

Size Document Number Rev

Date: Sheet of

CANIS CAN Firewall A

CANIS CAN Firewall

A4

1 1Wednesday, February 22, 2017

Title

Size Document Number Rev

Date: Sheet of

CANIS CAN Firewall A

CANIS CAN Firewall

A4

1 1Wednesday, February 22, 2017

Title

Size Document Number Rev

Date: Sheet of

CANIS CAN Firewall A

CANIS CAN Firewall

A4

1 1Wednesday, February 22, 2017

L1, C4, C5: Close to VDDANA / GNDANA (U2.5 / U2.6)

C6: Close to VDDIO1 / GND1 (U2.17 / U2.18)

C7: Close to VDDIO2 / GND2 (U2.36 / U2.35)

C8, C9: Close to VDDCORE / GND3 (U2.43 / U2.42)

C10: Close to VDDIO3 / GND3 (U2.44 / U2.42)

J3.6: SWO, Not used

TP6
CAN0_STB
TP6
CAN0_STB

TP1
VCPU
TP1
VCPU

TP9
CAN1_RX
TP9
CAN1_RX

TP7
CAN0_SHDN
TP7
CAN0_SHDN

R1
10k
R1
10k

U2

ATSAMC21G18A-AUT

U2

ATSAMC21G18A-AUT

PA00
1

PA01
2

PA02
3

PA03
4

GNDANA
5

VDDANA
6

PB08
7

PB09
8

PA04
9

PA05
10

PA06
11

PA07
12

P
A

0
8

1
3

P
A

0
9

1
4

P
A

1
0

1
5

P
A

1
1

1
6

V
D

D
IO

1
1
7

G
N

D
1

1
8

P
B

1
0

1
9

P
B

1
1

2
0

P
A

1
2

2
1

P
A

1
3

2
2

P
A

1
4

2
3

P
A

1
5

2
4

PA16
25

PA17
26

PA18
27

PA19
28

PA20
29

PA21
30

PA22
31

PA23
32

PA24
33

PA25
34

GND2
35

VDDIO2
36

P
B

2
2

3
7

P
B

2
3

3
8

P
A

2
7

3
9

R
E

S
E

T
N

4
0

P
A

2
8

4
1

G
N

D
3

4
2

V
D

D
C

O
R

E
4
3

V
D

D
IN

4
4

P
A

3
0

4
5

P
A

3
1

4
6

P
B

0
2

4
7

P
B

0
3

4
8

C15
100n
C15
100n

MH3
MH
MH3
MH

MH1
MH
MH1
MH

R3
1k
R3
1k

J6

M20-9760546

J6

M20-9760546

1
2
3
4
5

6
7
8
9
10

C9
1u
C9
1u

C4
100n
C4
100n

C12
10p
C12
10p

TP10
CAN1_STB
TP10
CAN1_STB

TP8
CAN1_TX
TP8
CAN1_TX

C5
10n
C5
10n

R4
330R
R4
330R

MH4
MH
MH4
MH

J1B

1
0
1
1
8
1
9
2

-0
0
0
1
L

F J1B

1
0
1
1
8
1
9
2

-0
0
0
1
L

F

6
7
8
9
10
11

U1
MIC5353-3.3YMT-TR
U1
MIC5353-3.3YMT-TR

EN
1

G
N

D
2

VIN
3

VOUT
4

NC
5

BYP
6

D1
SS12L
D1
SS12L

C16
100n
C16
100n

L1
470R
L1
470R

J2

M20-9760546

J2

M20-9760546

1 2
3 4
5 6
7 8
9 10

TP11
CAN1_SHDN
TP11
CAN1_SHDN

TP5
CAN0_RX
TP5
CAN0_RX

C8
100n
C8
100n

C10
100n
C10
100n

MH5
MH
MH5
MH

D3
LG T679-E2H1-1-Z
D3
LG T679-E2H1-1-Z

C2
100n
C2
100n

C7
100n
C7
100n

FM1
FM
FM1
FM

C14
100n
C14
100n

J1A

1
0
1
1
8
1
9
2

-0
0
0
1
L

F

J1A

1
0
1
1
8
1
9
2

-0
0
0
1
L

F

1
2
3
4
5

TP2
GND
TP2
GND

C11
10p
C11
10p

D2
SS12L
D2
SS12L

Y1

16 MHz

Y1

16 MHz

1

3

2

4

MH6
MH
MH6
MH

TP4
CAN0_TX
TP4
CAN0_TX

R5
430R
R5
430R

C1
1u
C1
1u

FM2
FM
FM2
FM

J3

JTAG

J3

JTAG

1 2
3 4
5 6J4

M20-9760546

J4

M20-9760546

1 2
3 4
5 6
7 8
9 10

A1
LOGO
A1
LOGO

R2
330R
R2
330R

TP3
CPU_RESET
TP3
CPU_RESET

C13
100n
C13
100n

J5

M20-9760546

J5

M20-9760546

1
2
3
4
5

6
7
8
9
10

FM3
FM
FM3
FM

MH2
MH
MH2
MH

C3
1u
C3
1u

U3

TCAN334GDR

U3

TCAN334GDR

TXD
1

GND
2

VCC
3

RXD
4

SHDN
5

CANL
6

CANH
7

STB
8

C6
100n
C6
100n

U4

TCAN334GDR

U4

TCAN334GDR

TXD
1

GND
2

VCC
3

RXD
4

SHDN
5

CANL
6

CANH
7

STB
8

Copyright © 2022 Canis Automotive Labs Ltd. 4 / 25

- AES and CMAC encryption software

- Rule execution functions

- Event logging system

- Management server

The software is written in MISRA C to run on pure ‘bare metal’ system. No RTOS

or other external software (e.g. libraries) is used.

2.3 Configuration

The system is configured off-line by defining the properties and firewall rules. This

is done via a configuration file that describes these, processed by a tool that then

produces a binary configuration for download into the flash file system in the

gateway. A gateway is turned from a generic to a specific device by this

configuration process.

The process is described below:

The configuration file is in JSON format with Jinja2 pre-processor commands

(allowing comments and file inclusion, for example). The configuration tool parses

the file and produces a binary file for programming into the gateway.

Access to the gateway is via a diagnostic tool that connects over CAN securely.

The interface that the gateway communicates on can be configured to include the

Outside bus because in some system there is no physical connector giving access

to the Inside bus. The access is secured by an end-to-end cryptographic scheme

called CryptoCAN and operates a command-response scheme. The commands

include:

- Programming the firmware of the gateway

- Programming configuration information

- Rotating encryption keys

- Programming firewall rules

- Extracting event logs

The diagnostic tool interfaces to an SQL key database where the keys for each

gateway are stored. The provisioning process for a new gateway and for key

rotation will stores in the SQL database the newly created keys for a given device

(each device has a unique serial number programmed into the flash file system).

This programming is done as a multi-phase transaction so that if the power were

to fail on the gateway while being programmed then it would not be bricked.

Copyright © 2022 Canis Automotive Labs Ltd. 5 / 25

3 Configuration

3.1 Configuration file

3.1.1 Simple example

A very simple example of the configuration file is given below:

{

 "untrusted->trusted": {

 "frames": [

 {

 "can_id": "S0x500",

 "name": "frame1"

 }

]

 }

}

This is about the simplest example of a configuration: the CAN bit rate settings for

both controllers go to defaults and a single forwarding rule is defined from the

untrusted bus: a standard ID frame with ID 0x500 is forwarded.

3.1.2 Fields

A frame can be defined to contain fields: these are signals packed within the

payload of a given CAN frame:

 "trusted->untrusted": {

 "frames": [

 {

 "length": 8,

 "clear_unused": true,

 "can_id": "S0x501",

 "name": "frame2",

 "fields": [

 {

 "length": 16,

 "position": 0,

 "name": "vehicle_speed"

 }

]

 }

]

 }

Here a single 8-byte frame is coming out from the trusted bus to the untrusted bus.

A single field within the frame is defined, of size 16 bits positioned at the last two

bytes of the CAN frame (in big endian format, the default). The clear_unused

setting is a rule that all other fields are to be cleared to zero so that only defined

information is passed out of the trusted bus.

Copyright © 2022 Canis Automotive Labs Ltd. 6 / 25

3.1.3 Rewrite rules

A frame can include re-write rules that set specified fields to specific values. In the

example below the fields of a frame are given fixed values .

"rewrite_payload": {

 "CoolFanActResponse_ACM": 0,

 "CoolFanActResponse_ACM_update_bit": 0,

 "SetTimer2Time": 0,

 "LanguageSet": 0,

 "AmbientNoiseRate": 0,

 "SetTimer2Time_update_bit": 0

},

"tag": 13,

"not_forwarded": true,

This can be useful in cases where fields are used by off-the-shelf devices, but the

policy is not to allow them to see varying sensor values (when from untrusted to

trusted this is typically to ensure compatibility but limiting the attack surface, and

when from trusted to untrusted this is for confidentiality or backward

compatibility).

The example also shows how frames can be given user-defined tags that are used

in event logging (typically these tags are be used as keys in a user application to

identify the frame).

The not_forwarded keyword is used to create a drop rule. This is typically used

to override an existing configuration file (perhaps one that had been provided by

a central authority), normally done by using the pre-processor to include it from

an override file (the configuration file format is designed to allow the declaration

of a frame across multiple files). It can also be used when defining a frame that the

gateway itself uses. For example, the following declares a frame used for

commands to control the gateway:

{

 "name": "NSP_CMD",

 "length": 8,

 "nsp_command": true,

 "tag": 60,

 "not_forwarded": true,

 "can_id": "E0x1fffe000"

},

The nsp_command marker indicates that this is a gateway command frame

(typically from a diagnostic tool).

As well as payloads, CAN IDs can be rewritten:

 {

 "name": "EDGE_DIAG_RESP",

 "rewrite_id": "E11111111111111110000000100000",

 "can_id": "S0x7fe"

 }

This can be used for fitting off-the-shelf devices into a new network.

3.1.4 Real-time rules

The real-time behavior of a frame can be specified:

Copyright © 2022 Canis Automotive Labs Ltd. 7 / 25

 "untrusted->trusted": {

 "frames": [

 {

 "realtime": {

 "J/ms": 5.0,

 "T/ms": 100.0,

 "frame_budget": 1,

 "W/ms": 10.0

 },

 "can_id": "S0x500",

 "name": "frame1",

 }

],

 "baud": {

 "bits_per_second": 500000

 }

 }

The realtime rule specifies a frame’s period (in this case 100ms) and its frame

jitter (i.e. the variability in frame arrival time, caused by variable handling time in

the sender device and variable latency across the untrusted bus). Frames are

allowed to burst: a segmented message means a certain number may arrive back-

to-back. The frame budget indicates the maximum number in the burst, and the

frame window (specified by W) indicates the window in which the burst is confined.

The jitter and period apply to the burst of frames. In this example, the burst is of

size 1 (i.e. a singleton frame).

The reason for this specific model is twofold:

- It captures segmented messaging without requiring the transmitter to

eke out the frames within a segmented message

- It is amenable to timing analysis that can guarantee the latencies of

frames on the bus provided they are constrained to this model

The second point is important: a burst can be allowed through the firewall if it fits

within the timing model, and its behavior within the constraints model can be

analysed on the trusted side to prove that all other frames on the trusted bus will

still meet their latency requirements.

The timing analysis for CAN bus is out of scope for this document but it has been

used in many projects and a security gateway must be able to constrain traffic from

an untrusted side so that the results of the analysis can be relied upon on the

trusted bus.

The bus bit rate can also be configured (there are defaults for the bit rate, as well

as the other CAN settings such as SJW and sample point).

3.1.5 Group control

Groups of frames can be defined, with groups enabled and disabled by external

commands.

"group_names": {

 "DIAG": 1,

 "INTERLOCKED_SRS": 2

},

Copyright © 2022 Canis Automotive Labs Ltd. 8 / 25

Here two groups are being defined. Frames can be allocated to specific groups:

 {

 "name": "SRS_OFF",

 "tag": 63,

 "enabled_group": "INTERLOCKED_SRS",

 "can_id": "S0x701"

 }

This indicates that the frame can only be forwarded if the group is enabled. The

group can be enabled by default and disabled by remote command (using a

gateway command frame).

Groups can be allowed to be enabled only if the interlock switch is set (so that

remote commands are prevented from enabling the group if the switch is not set):

 "interlock_enabled_groups": [

 "INTERLOCKED_SRS"

]

Typical uses for groups include:

- Critical frames that should only be allowed if some physical mode is set

(e.g. a trailer is connected)

- Frames that should only come from certain sources at certain times (e.g.

a diagnostic tool is connected)

3.1.6 Encryption

The gateway supports frames encrypted using CryptoCAN1.

 {

 "name": "EDGE_DIAG_CMD",

 "cryptocan": {

 "decrypt_keypair": "EPHEM_DIAG",

 "mode": "decrypt",

 "pdu_id": 3405643778,

 "receive_encryption_bit": 0

 },

 "can_id": "E0x1fffe010"

 },

Here an encrypted frame called EDGE_DIAG_CMD is defined. It is encrypted

with a named keypair and it to be decrypted by the gateway before being

forwarded. The keypairs (one for encryption, one for authentication) are stored in

the gateway and can be rotated by a programming tool. It is intended that each

gateway has unique set of keys so that physically breaking into one specific

gateway device does not open up all other gateways.

The secure frame has a defined Protocol Data Unit (PDU) to globally identify the

frame (this can map on to a CAN ID but it doesn’t have to) since CryptoCAN is an

end-to-end encryption scheme: the frame may have originated remotely from a

cloud-hosted tool and put on to the untrusted bus by a telematics device, for

example. The configuration allows the authentication code to map the CAN ID to

the PDU ID to perform the authentication.

1 CryptoCAN is a scheme for secrecy and authentication that uses two 8-byte CAN frames to carry an

authenticated payload

Copyright © 2022 Canis Automotive Labs Ltd. 9 / 25

The receive_encryption_bit keyword specifies which bit in the CAN ID is used

to for encrypted frame sequencing (this is how CryptoCAN ties pairs of CAN

frames together).

3.2 Configuration tool

The configuration tool is an executable command line tool that processes the

configuration file (or, more specifically, joining a collection of file fragments and

parsing those). It builds an abstract definition of the system described by the files

and then from this it produces a binary image containing:

- Groups (including enabled on boot and enabled by interlock)

- Key pairs

- Device part number and other configuration information

- Firewall rules (forward/drop rules, real-time rules, encrypt/decrypt

rules, etc.)

- Global CAN ID masks (e.g. a J1939 bus would typically have the priority

and addressing fields masked out prior to identification)

- Frame identification table (a ‘perfect’ hash table that the firmware uses

to identify the CAN frame from its ID after masks are applied)

This binary image is programmed into a gateway remotely over CAN to provision

it as a specific gateway.

3.3 Programming

The gateway supports remote commands for programming, with commands

contained in CryptoCAN frames. Each command fits within a single CryptoCAN

frame and has optional 4 byte parameter. The table below gives the command set:

PING This sends a value and expects it sent

back.

PING_NO_RESPONSE This is a ping command but the gateway

should not send a response (used

because CryptoCAN always drops the

first encrypted frame after a reset)

GET_SERIAL_[A|B|C|D] This is a set of four commands that

obtain the serial number of a device. This

command-response sequence does not

used CryptoCAN because it is part of the

bootstrap process to talk to a gateway.

CONNECT This initiates a secure connection to the

gateway.

DISCONNECT

CONNECTED_PING This is part of the challenge-response

protocol for tool and gateway to

authenticate to each other.

Copyright © 2022 Canis Automotive Labs Ltd. 10 / 25

SET_KEYPAIR_AES_[A|B|C|D] This group of four commands sets a

specific encryption key to a new value.

SET_KEYPAIR_MAC_[A|B|C|D] This sets a specific authentication key

WRITEBACK_KEYPAIR This causes the key to be written to

stable storage (this is part of a multipart

handshake to ensure that if the power

fails during a key update then the

gateway is not bricked).

MODIFY_KEYPAIR

SET_CSPRNG_KEY This sets the key for the random number

generator (the SAMC21 does not have a

true random number generator so one is

synthesised from a stored secret key).

MODIFY_TOOL_KEYPAIR These commands set the keypair for the

tool-gateway communication. APPLY_TOOL_KEYPAIR

CONFIRM_TOOL_KEYPAIR

SET_SWITCHES These commands set certain

configuration values and are done via a

multi-phase transaction to be secure

against a power fail or crash during

update.

FLUSH_ALL_SWITCHES

RELOAD_ALL_SWITCHES

BEGIN_CONFIG_WRITE These are the commands for writing a

new configuration (the firewall rules,

etc.) to the gateway. The configuration is

not stored in stable storage2 so there is a

process for checking the storage and re-

attempting a failed write.

WRITE_CONFIG_DATA

END_CONFIG_WRITE

CRC_CONFIG This command requests the CRC of the

configuration. If the CRC doesn’t match

then the

RESTART_FIREWALL This remotely reboots the gateway and

starts it operating normally.

SET_SERIAL_[A|B|C|D] These four commands sets the serial

number of the gateway.

SET_TSEG1 These commands set the CAN bus

properties for the bus that the tool will

connect on (the other bus is set from the

configuration file written by the tool).

SET_TSEG2

SET_PRESCALE

SET_SJW

SET_FROM_TOOL_SECURE_ID These change the CAN ID used for

communication between tool and

gateway.

SET_TO_TOOL_SECURE_ID

SET_FROM_TOOL_INSECURE_ID

SET_TO_TOOL_INSECURE_ID

2 Stable storage is a non-volatile file structure where the file is always valid and is updated atomically: it

cannot be left in an intermediate state if there is (e.g.) a power failure during update. It normally requires

storing at least two copies of the data, with a rollback mechanism on boot.

Copyright © 2022 Canis Automotive Labs Ltd. 11 / 25

SET_DEVICE_ID The device ID is used to identify the

device on the bus: in general there may

be more than one security gateway on a

trusted bus and the tool will typically

need to communicate with each.

APPLY_FIREWALL_SETTINGS These commands are used to test a

gateways settings are valid before

writing them to non-volatile storage to

prevent a gateway from being bricked.

CONFIRM_FIREWALL_SETTINGS

GET_CONFIG_STATUS

CONFIRM_CONFIG

RESET_TO_FACTORY This resets the gateway to factory

settings.

As can be seen from the command set, avoiding bricking a gateway is critical: there

is a multi-phase update sequence for critical information (e.g. keys, serial number,

baud rates) so that if the tool fails to re-connect with the new settings then they

will be rolled back. The use of stable storage for these ensures that the last phase

consisting of writeback will either succeed or fail to a valid state to allow the tool

to re-attempt setting changes.

Copyright © 2022 Canis Automotive Labs Ltd. 12 / 25

4 Management

4.1 Introduction

The security gateway provides management functions for a remote device to

access. The rationale is that a trusted device on a CAN bus can communicate

securely with the gateway to manage it. This might be to enable certain groups

(e.g. a secure user interface device might be used to enable diagnostics tool frames

being passed through) or it might be used for intrusion detection (e.g. a telematics

device might route external commands to the security gateway to upload security

events to a central monitoring system).

4.2 Management commands

The gateway accepts management commands through the same interface as the

programming tool described earlier, except that a different keypair is used to

secure the connection. Depending on the architecture of the management system,

those keys may be stored locally (e.g. in a user interface device) and must therefore

be stored securely.

The table below shows the management commands:

SNAPSHOT_EVENT Requests an event is transferred to

a snapshot buffer.

GET_NUM_EVENTS Requests the number of events.

GET_SNAPSHOT_PARAMETER Uploads an event-specific

parameter from the specified

snapshot buffer.

ENABLE_FRAME_GROUPS Enables a group of frames (e.g.

over-the-air programming frames)

DISABLE_FRAME_GROUPS Disables a group of frames

SET_FLAGS Controls global settings of the

gateway

GET_TIME This is used to sync the local time

of the security gateway with the

management device’s time (e.g. in

order to translate event timestamps

into real time).

SET_TIME Sets the gateway’s local time.

REQUEST_PART_NUMBER_[A|B|C|D] Requests a user-specific part

number of the gateway. This can be

used for configuration

management.

4.3 Event logging

Events are logged by the gateway to provide some information about things that

have happened. It is not intended to be a full intrusion detection system (IDS) but

does provide some functions.

Copyright © 2022 Canis Automotive Labs Ltd. 13 / 25

There are six event logs, and they store the following:

- Non-matching Frame (NMF). A frame is seen on the bus that is not

identified by the ID matching rules.

- Group. A frame is dropped because the group is not enabled.

- Realtime. A frame is dropped for violating the real-time rules.

- Content. A frame is dropped because a field within the frame violated

the range check rule.

- CryptoCAN. A frame was dropped because its authentication code

failed.

- System. A system event occurred.

The logs operate in a linear/ring system: a list stores the first n events, and a ring

stores the most recent m events. Thus many events will leave a trace of when they

first occurred, and of what happened most recently.

Each event logged is assigned a millisecond-accurate timestamp with a range of

136 years. In addition, there are event-specific parameters stored. For example,

NMF events store the CAN ID and payload of the non-matching frame. The system

event log stores timestamps of management events, including when the time was

changed.

The events are logged into RAM and are lost if the gateway is powered off: the

assumption is that events are periodically extracted by a management device

which either uploads them or stores them locally in non-volatile storage.

Copyright © 2022 Canis Automotive Labs Ltd. 14 / 25

5 CAN frame handling

5.1 CAN drivers

The CAN drivers are interrupt driven and run fast enough to remove incoming

frames from the CAN controller before the hardware FIFO overflows. The

outgoing queueing is done in priority order using the SAMC21 hardware priority

system (which queues up to 32 frames and enters them into arbitration in CAN ID

order).

The drivers therefore avoid priority inversion (that can cause arbitrary delays in a

CAN frame buffer).

5.2 Transmit FIFO queueing

FIFO queues for transmission suffer from priority inversion are normally to be

avoided. But in one specific case they are necessary: for CAN frames of the same

ID that form part of a segmented message. The SAMC21 CAN hardware will pick

an arbitrary frame to send when there are several with the same ID (in effect re-

ordering frames). This cannot work for segmented messaging, so the gateway

allows a FIFO queue to be allocated to a frame, and FIFO queues feed the main

priority queue.

If a frame with FIFO allocated is received then it is put into the priority queue

unless a prior frame with that ID is already in the queue, in which case it will go

into its FIFO queue. When prior frame is transmitted from the priority queue then

the head of its FIFO will be transferred to the priority queue.

The policy for a FIFO overflow is set in the configuration file: if drop_oldest is set

then new frames added to the FIFO cause old frames at the head of the FIFO to be

discarded (the default behavior is to drop the newest frames if there is no room).

5.3 Frame jitter

Frames are processed immediately and queued for transmission (if not dropped)

immediately, meaning they inherit an outgoing jitter equal to the incoming jitter

plus the variability in the processing time (frames with real-time rules attached

will of course be dropped if the incoming jitter is too large).

Copyright © 2022 Canis Automotive Labs Ltd. 15 / 25

6 NMFTA Requirements Analysis

6.1 Introduction

This section will look at how the Canis Labs security gateway maps on to formal

NMFTA requirements for a security gateway.

There is some terminology shift between the Canis Labs terms and the NMFTA

terms. These are outlined below.

NMFTA Canis Labs

“UND” “Untrusted” or “Outside”

“TND” “Trusted” or “Inside”

“Abstract Unintended Gateways” “Hijacked devices” (devices on the

trusted bus that have been hijacked

and can be used to attack the CAN bus)

“Address claim attack” Dynamic spoofing (abusing the J1939

dynamic protocol for allocating

addresses to ECUs)

6.2 Security Requirements for Abstract Unintended Gateways

These requirements are out of scope for this document.

6.3 Security Requirements for Abstract (Intended) Gateways

6.3.1 Gateway Configuration Protected (AGW-S-000)

Compliant. The configuration is programmed only by an authorized and

authenticated connection to a programming tool. The configuration is protected

against corruption during programming by stable storage and against memory

corruption by a CRC.

6.3.2 Prevents OTA (AGW-S-001)

Compliant. OTA frames from a programming / diagnostic tool can be blocked by

the Canis Labs gateway by assigning them to a mode and then having the mode

enabled by some means (which could be a secure management command from a

telematics gateway, or by a group assigned to the hardware interlock switch).

6.3.3 Prevents DoS (AGW-S-002)

Compliant. The real-time rules can be set in the configuration file to prevent frames

flooding the bus (while allowing segmented messaging).

6.3.4 Prevents spoofing (AGW-S-003)

Compliant. Forwarding rules prevent frames originating on the untrusted bus

from masquerading as frames originating on the trusted bus.

Copyright © 2022 Canis Automotive Labs Ltd. 16 / 25

There are two other types of spoofing beyond this simple spoofing:

1. Frames from the untrusted bus masquerading as frames from another device

on the untrusted bus.

2. Frames from the trusted bus masquerading as frames from another device

on the trusted bus.

Case (1) could happen where an attacker left a wired attack device (like a

Raspberry Pi) on the untrusted bus and then when it saw a diagnostic tool start a

connection session (after a mode was enabled, for example) it could attack the

diagnostic tool with a CAN protocol attack (pushing it error passive or bus off)

and then masquerade as the diagnostic tool – an Ambush Attack. This can be

addressed by use of cryptographic authentication between the diagnostic tool and

the security gateway. The Canis Labs security gateway can authenticate and

decrypt CryptoCAN traffic.

Case (2) is the situation where a device on the trusted bus has been attacked via a

remote code execution (RCE) exploit. There are generic security requirements for

hardening these devices (see Security Requirements for Abstract Unintended

Gateways).

Case (2) is not prevented by the Canis Labs security gateway described in this

document. Canis Labs has developed hardware IP to detect several CAN protocol

attacks (like the Bus Off attack) and this could be incorporated into a security

gateway to detect attacks and disable the mode.

6.3.5 Prevents exfiltration (AGW-S-004)

Compliant. The re-write rules in the configuration file describe earlier prevent

unwanted exfiltration: either generically erasing all bits not defined by a field or

by setting a defined field to a fixed value.

6.3.6 Prevents elevation (AGW-S-005)

Compliant. The use of modes and a management interface / interlock can prevent

privileged frames from entering the trusted bus.

NB: The note in section 6.3.4 on the Ambush Attack still stands.

6.3.7 Prevents data loss (AGW-S-006)

Compliant. There are mechanisms to prevent buffer overflows. Caveat: the system

configuration (including timing behavior of the trusted bus) must not exceed the

limits of the security gateway resources.

Prevention of buffer overflows requires two things:

1. Rate limiting to prevent overflows

2. Analysis of the rate limits to determine a priori that the buffer space

allocated is sufficient to not have frame drops from overflows

The latter means applying timing analysis to the defined traffic patterns to

determine peak loads. All the traffic on the trusted bus should be known so that

Copyright © 2022 Canis Automotive Labs Ltd. 17 / 25

those peak loads for egressing frames can be known (recall that the latency jitter

must be known).

For the untrusted bus, the timing analysis assumptions may not hold because the

traffic on that bus cannot be trusted. This means that the untrusted to trusted flow

can only be guaranteed free of data loss only within certain bounds.

As discussed earlier, operation of the untrusted bus cannot be guaranteed

(including the cases of CAN frame and CAN protocol attacks from one device to

another on that untrusted bus). This is a fundamental weakness of the security

gateway approach and there may be a requirement to have several untrusted buses

(perhaps via several gateways) to confine specific threats to a specific untrusted

bus.

6.3.8 Preserves high side operation (AGW-S-007)

Compliant. The Canis Labs gateway imposes per-frame rate limits and leaves the

trusted bus amenable to timing analysis to prove that all timing requirements are

met. No CAN protocol attacks can come through the gateway because there is no

direct access to the CAN TX pin of a transceiver connected to the trusted bus.

NB: The risk of a hijacked device on the trusted bus remains and is addressed by

other requirements (see “Security Requirements for Abstract Unintended

Gateways”).

NB: Timing analysis needs to be carried out (using appropriate tool support) to

prove that the rate limits defined in the configuration file are sufficient to protect

the bus.

6.3.9 Security assurance (AGW-S-008)

Compliant. This requirement refers to the security of the gateway itself: if the

gateway is not secure then it could itself be hijacked and overridden. The Canis

Labs gateway addresses this in several ways, including by avoiding all external

libraries and being pure bare metal software.

There is further discussion of this later in this document.

6.3.10 Preserves performance (AGW-S-009)

Compliant. This requirement specifies that the performance of the trusted bus can

be guaranteed. That that requires both (1) that there can be no performance

degradation from traffic passed through and (2) that also traffic that is passed

through is done so within timing constraints.

Case (1) is met by the real-time rules which place constraints on the traffic that can

be passed through. This does require that timing analysis is performed on all the

traffic on the trusted bus with formally defined latency deadlines for all frames so

that this requirement can be proved.

Case (2) is met by timing analysis on the security gateway software to determine

worst-case response times between the arrival of an incoming frame and its

placement in the outgoing CAN controller. Note that the jitter reduction scheme

Copyright © 2022 Canis Automotive Labs Ltd. 18 / 25

of holding back an early frame needs to be excluded when performing this analysis

for the security gateway.

6.3.11 Mode switch (AGW-S-010)

Compliant. The mode switch support in the Canis Labs gateway is sufficient to

achieve this.

NB: A mode can be activated by a physical mode switch (which is grounded to

activate) or by an authenticated encrypted command from an authorizing source

(local or remote).

6.3.12 Mode switch indicated (AGW-S-011)

Compliant. The status of the Canis Labs gateway is reported in response to a secure

command from a management device. This management device can periodically

request the status and report it in human readable form.

6.3.13 Security Requirements for CAN Gateways

6.3.13.1 Performant (CGW-S-001)

Compliant. All rules pertaining to a frame need to execute in less CPU time than it

takes to receive the frame. But note that certain configurations may result in non-

compliance if the performance of the hardware is insufficient.

Frame identification is one of the most CPU-intensive parts to handling incoming

frames. Some CAN controllers help with hardware support but few can cope with

the number of different frames a gateway could be required to support. The

requirements ought to include a lower bound on the number of frames supported.

The real-time drop rules are expensive operations in software: they require

accurate timestamps (to better than a microsecond) but a long range. The Canis

Labs gateway software uses 64-bit arithmetic for this to ensure monotonicity and

simpler equation evaluation, but this is CPU intensive on a low-end 32-bit MCU.

The field rules in the Canis Labs gateway are transformed to 64-bit operations on

a payload, so masking out unused bits and setting fields to constant values is done

in one operation (the values are pre-computed by the configuration tool). Range

checking the fields however is a serial operation, and custom hardware designed

for this could perform the operations in parallel.

The Canis Labs gateway performs cryptographic operations in software, and this

is slow. Hardware acceleration for this is necessary to be able to process frames at

full speed.

NB: Domain-specific hardware designed for gateway operations can be used to

accelerate the following operations:

- Handing frame identification in hardware using an ID table

- Implementing real-time drop rules in hardware

- Handling field rules in parallel

- Encryption and authentication

Copyright © 2022 Canis Automotive Labs Ltd. 19 / 25

6.3.13.2 Re-write / Masking (CGW-S-002)

Compliant. The Canis Labs re-write and masking rules are included in the

configuration file description.

6.3.13.3 Preserved Atomic Multicast (CGW-S-005)

Compliant. The atomic multicast feature of CAN is preserved by not dropping

legal frames (the atomicity property of CAN is that every device connected to a

bus and operating in error active mode receives a frame at least once). Caveat: that

this property cannot be guaranteed for traffic from the trusted to untrusted bus

because the untrusted bus may not be performant.

NB: Legal frames are dropped only if there is insufficient buffer space to hold

them. This happens if the frames queued for transmission are not sent rapidly

enough, and that happens for one of two reasons:

1. The system goes through periods of legal transient overload where frames just

happen to take close to their worst-case latencies, but this was not allowed for

in the sizing of buffers for the security gateway.

2. The system goes through periods of illegal transient overload where frames

exceeded their worst-case latencies and although the worst-case latencies were

allowed for in the sizing of buffers, this is not sufficient to eliminate frame

dropping.

In case (1) the security gateway was not configured according to systems analysis

that determined the worst-case performance. This indicates a derived requirement

that timing analysis must be performed on the trusted bus to meet this

requirement. This is only valid for the trusted bus: the untrusted bus cannot be

guaranteed to be performant.

In case (2) the system did not behave correctly. The untrusted bus cannot be

guaranteed to be performant and in this case the buffer space may well be

insufficient (for example, high priority traffic is flooding the bus). Guarantees of

atomicity in this direction are therefore conditional.

6.3.13.4 Won’t Drop Frames (CGW-S-005a)

Compliant. This is derived from CGW-S-005. See the discussion of that

requirement.

6.3.13.5 No Priority Inversion (CGW-S-005b)

Compliant. The Canis Labs gateway drivers use the SAMC21 hardware to transmit

frames in a 32-deep priority queue. Caveat: a configuration must not exceed the

limits of an implementation.

NB: the priority queue may not be deep enough for all frames (see frame dropping

discussion earlier), depending on the configuration. To validate this requires

timing analysis performed on the destination bus.

Copyright © 2022 Canis Automotive Labs Ltd. 20 / 25

6.3.13.6 Preserves Ordering (CGW-S-005c)

Compliant. FIFO queues that feed into the main priority queue are created if

specified in the configuration file. A FIFO is for a specific frame ID only and

therefore the requirement for no priority inversion (CGW-S-005b) is met.

6.3.13.7 FIFO but also Priority (CGW-S-005d)

Compliant. The size of the FIFO and the semantics are defined for dealing with

overflows (drop oldest vs. drop newest). Note that overflows can be prevented by

using timing analysis (see discussion for requirement CGW-S-005).

6.3.13.8 Preserves Jitter (CGW-S-005e)

Non-compliant. The Canis Labs gateway does not control jitter (except insofar as

rate limiting frame arrivals). To implement this requirement a frame that arrives

‘early’ (in relation to its period) should be held over from being queued until this

minimum time since the last arrival has expired.

For frame bursts, the burst itself can be held back (i.e. a segmented message can be

made to be periodic) but within a burst frames can still be sent as fast as they arrive.

The implementation of this requirement in software is difficult: a delay in handling

the timing event for the expiry of the early arrival holdback time will be a new

source of jitter (many frames may have their expiries coincide, causing

considerable CPU time to handle this).

Canis Labs is designing its own CAN buffering system to implement this holdback

time in hardware, so the frame can be put into the queue but with an expiry time

and the hardware will automatically process this time without CPU intervention.

6.3.13.9 Impervious To Address Claim Attacks (CGW-S-100)

Compliant. The address claim attack requires a low-level CAN protocol attack, and

the security gateway prevents this from taking place on the trusted bus (see

discussion for requirement AGW-S-007). Caveat: This applies to the trusted bus

only because an address claim protocol on the untrusted bus will not be prevented.

Copyright © 2022 Canis Automotive Labs Ltd. 21 / 25

7 Additional requirements

7.1 Introduction

The requirements in this section are derived from requirement AGW-S-008

(Security Assurance) to harden the security of the security gateway itself (there

have been instances of security gateways themselves containing vulnerabilities

and therefore being a vector for attacks).

7.2 Secure hardware

There is an additional set of requirements on the security gateway not met by the

Canis Labs gateway: a secure hardware platform (the Canis Labs gateway predates

the wide availability of secure MCU hardware).

A secure hardware platform should:

- Resist physical exfiltration of data (e.g. prevent reading out of

configuration data and firmware via a JTAG connector)

- Not permit reprogramming by unauthorized firmware (i.e. there should

be a secure boot process)

- Store encryption keys securely so that if software in the MCU is

compromised (by an RCE, for example) then the keys cannot be read out

The above requirements can be met with an MCU that includes an SHE+ HSM.

Today these are widely available devices. Hardware encryption should anyway be

included for performance reasons.

7.3 Rollback resistance

The rollback to a previous version of firmware should be prevented: it is a common

attack to force the existing firmware to fail on boot and for a system to boot from

an older copy kept the system. The reason for keeping an old version of the

firmware is normally to prevent a system from being bricked if power is lost

during programming (see earlier discussion) but once the system has been

securely upgraded then the previous version should be erased.

The same operation applies to cryptographic keys: any previous version of a key

should be erased once the operation has completed correctly.

7.4 Secure programming language

There are well-known programming weaknesses that cause problems, such as

buffer overflows. Many of these are due to inherently dangerous languages such

as C. The Canis Labs gateway firmware is written in C because of availability of

tools at the time. Today the SPARK Ada subset would be more appropriate to a

high security application: there are formal verification tools of the type that

hardware design has been using for some years, plus the open source tools now

can generate code for Arm Cortex M and RISC-V based MCUs. If custom hardware

is used for the bulk of security gateway features then the software will be

Copyright © 2022 Canis Automotive Labs Ltd. 22 / 25

moderate, confined mostly to management, and it should be amenable to formal

verification to prove there are zero RCE vulnerabilities.

Copyright © 2022 Canis Automotive Labs Ltd. 23 / 25

8 Systems analysis

8.1 Introduction

Several of the requirements discussed in this document highlight the need for a

systems view, specifically in the area of real-time behavior. This section discusses

what must be done at a system level, how it can be done, and why it must be done.

8.2 Buffer analysis

A security gateway can allocate buffer space for frames (both a single priority

queue and also FIFO queues that feed it) but the amount of space to allocate has to

come from systems analysis. There are two ways to do this:

- Allocate some buffer space, see if there are overflows, allocate more

buffer space and hope that fixes it

- Calculate the worst-case buffer space requirement

The first approach doesn’t meet the requirements of CAN atomicity, for example,

and dropping frames can introduce all kinds of functional and timing faults,

triggering ‘ghost’ errors in a system.

The second approach works out how long a frame can be in the buffer by looking

at the worst-case latencies for frames on the bus and worst-case arrival pattern

from the other bus. The worst-case arrival patterns are given by timing analysis –

and real-time drop rules can enforce them. Similarly, worst-case latencies are given

by timing analysis.

8.3 Timing analysis on CAN

There are two steps to performing timing analysis on CAN:

1. Derive the model for CAN traffic.

2. Calculate the worst-case latencies for the traffic.

Step (1) is done by inherent knowledge of the traffic on the bus (where periodicities

and frame IDs are known a priori from some database of frames) or by observing

the behaviour of a bus for some time to measure frame periodicities. A hybrid

approach can be used too: the base model derived from observation and then

augmented with human knowledge of the design of a system.

Step (2) is a straightforward calculation based on the behavior of the CAN

protocol. Some assumptions are necessary for this: the drivers must be free of

priority inversion: when a frame is created by the application and put into the

drivers it must also be entered into arbitration. Nearly all CAN hardware can be

driven in a way that avoids priority inversion so this requirement is on the

software drivers being written properly.

The timing analysis is straightforward and has been used in the automotive

industry for at least two decades. Tool support exists, both for automating step (1)

and for performing the calculations in step (2). With the right tool hardware, it is

Copyright © 2022 Canis Automotive Labs Ltd. 24 / 25

even possible to detect cases of priority inversion in software drivers (for example,

Canis Labs has implemented CAN controller hardware that captures low-level

events in the protocol that can be used to infer the behavior of software in each

ECU).

Copyright © 2022 Canis Automotive Labs Ltd. 25 / 25

9 History

9.1 Issue 02 2022-02-07

- Added specific note that this document contains requirements gap

analysis

- Formal requirement numbers added to headers

- Discussion on AGW-S-009 (“Preserves Performance”) added

- Discussion on CGW-S-005 (“Preserves Atomic Multicast”) added

- Added section on systems analysis

- Added history section

9.2 Issue 03 2022-03-21

- Updated requirement numbers to match Strictdoc updates

- Restructured text for automatic processing

